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Using
Minimum-Surface

Bodies for Iteration

Space Partitioning

Michael Frumkin and Rob F. Van der Wijngaart*

Abstract

A number of known techniques for improving cache performance in scientific com-

putations involve the reordering of the iteration space. Some of these reorderings
can be considered as coverings of the iteration space with the sets having good
surface-to-volume ratio. Use of such sets reduces the number of cache misses in

computations of local operators having the iteration space as a domain. We study
coverings of iteration spaces represented by structured and unstructured grids. For

structured grids we introduce a covering based on successive minima tiles of the

interference lattice of the grid. We show that the covering has good surface-to-

volume ratio and present a computer experiment showing actual reduction of the

cache misses achieved by using these tiles. For unstructured grids no cache effi-

cient covering can be guaranteed. We present a triangulation of a 3-dimensional

cube such that any local operator on the corresponding grid has significantly larger

number of cache misses than a similar operator on a structured grid.

1 Introduction

A number of known techniques for improving cache performance in scientific compu-

tations involve the reordering of the iteration space. We present two new methods

for partitioning the iteration space with minimum-surface cache fitting sets. Such
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partitionings reduce the number of cache misses to a level that is close to the the-

oretical minimum. We show that the coverings reduce the number of the misses

by actual measurements of cache misses in computations of a second order stencil

operator on structured three-dimensional grids.

A good tiling of the iteration space for structured discretization grids can be
constructed by using the interference lattice of the grid. This lattice is a set of grid

indices mapped into the same word in the cache or, equivalently, a set of solutions

of the Cache Miss Equation [4]. In [2] we introduced a (generally skewed) tiling of
the iteration space of the explicit operators on structured grids with parallelepipeds
built on a reduced basis of the interference lattice. We showed that for lattices

whose second shortest vector is relatively long the tiling reduces the number of
cache misses to a value close to the theoretical lower bound. Constructing the

skewed tiling, however, is a nontrivial task, and involves a significant overhead in
testing whether a particular point lies inside the tile. Tiling a three-dimensional

grid, for example, requires the determination of 29 integer parameters to construct

the loop nest of depth six, and involves a significant branching overhead.

In this paper we introduce two new, more practical coverings of structured

grids: a covering with Voronoi cells and a covering with rectilinear parallelepipeds
built on the vectors of successive minima of the interference lattice. In lattices

with a relatively long shortest vector the cells of both coverings have near-optimal

surface-to-volume ratios. Hence, the number of cache misses in the computations

_iled with these cells is close to the theoretical minimum derived in [2]. Direct mea-

surements of the cache misses show a significant advantage of the successive minima

covering relative to the computations using the canonical loop ordering (maximally

optimized by a compiler). On the other hand, we construct an unstructured grid

that triangulates a 3-dimensional cube and show that the grid can not be covered

with sets having good surface-to-volume ratios. The last result shows that any com-
putation of an explicit local operator on such 3-dimensional grid would suffer larger

number of cache misses then a computation of a similar operator on a structured

grid of the same size.

2 Cache Usage in Computations of Local Operators

Local operators on the grids. We consider the problem of computing a local explicit

operator q = Ku on data defined at the vertices of an undirected graph G = (V, E)

which we call grid. Locality of the operator K means that computation of q(x), x E

V, involves values of u(y), y E V, where y is at a (graph) distance at most k from x.

This k is called the order of K and assumed to be independent of G. K is explicit,

meaning that the values of q can be computed in arbitrary order.

The structured and unstructured grids we consider have an explicit or im-

plicit embedding into an Euclidean space. Structured grids are Cartesian products

of line graphs, while edges of unstructured grids are defined explicitly by an adja-
cency matrix. We assume that the maximum vertex degree is independent of the

total number of vertices. A grid is called a triangulation of a body B if it can be

represented as a 1-dimensional skeleton of a simplicial partition of B.
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Cache Model. We consider a single-level, virtual-address-mapped, set-associa-

tive data cache memory, see [3]. The cache is organized in a sets of z lines of w

words each. Hence, it can be characterized by the parameter triplet (a, z,w), and

its size S equals a. z • w words. The cache memory is used as a temporary fast

storage of words used for processing. A word at virtual address A is fetched into

cache location (a(A), z(A), w(A)), where w(A) = A mod w, z(A) = (A/w) mod z,

and a(A) is determined according to a replacement policy.

The number of cache misses incurred in computation of K depends on the

order in which elements of u are stored in the main memory• We assume that for

structured grids an element u(il , . . . , ia) is stored at address A = il +nil2 + nl n2i3 +

• • • + ni • • • na-iid, where n_, • • •, na-1 are the grid sizes. For unstructured grids we

don't assume any particular ordering of the grid points (and, hence, elements of u).

Instead we choose an ordering that reduces the number of cache misses.

Replacement loads. A cache miss is defined as a request for a word of data

that is not present in the cache at the time of the request. A cache load is defined

as an explicit request for a word of data for which no explicit request has been made

previously (a cold load), or whose residence in the cache has expired because of a
cache load of another word of data into the exact same location in the cache (a

replacement load). The definitions of cold and replacement loads are analogous to

those of cold and replacement cache misses [4], respectively, and if w equals 1 they

completely coincide.

Surface-to-volume ratio. One technique for minimization of the number of re-

placement loads is to cover the grid G = (V, E) with conflict-free sets V = U Vi, i =

1,..., k, ll/_l = S, that is, sets without vertices mapped to the same location in
cache. If we calculate q in all vertices of Vi before calculating it in vertices of

Iz), j > i, a replacement load can occur only at vertices having neighbors in at least

two sets (boundary vertices). We consider only bounded degree graphs, so if we

can find a covering with sets having volumes ]V/I close to S and a minimal num-

ber of boundary vertices [Or//I (and edges), then the computation of K will have a
number of replacement loads close to the minimum. The total partition boundary

k
]>-_i=1 ]0_] can be used to obtain a lower bound for the number of replacement

loads, as shown in [2], cf. [5].

3 Structured Grids

3.1 Interference Lattice

Interference lattice. Let u be a d-dimensional array defined at the vertices of a

structured d-dimensional grid of size nl ... rid. Let L be a set in the index space of

u having the same image in cache as the index (0,..., 0). L is a lattice in the sense

that there is a generating set of vectors {bi}, i = 1,... ,d, such that L is the set of
d

grid points {(0,..., 0) + _,=x x_bi Ix_ E Z}. We call L the interference lattice of

u. It can be defined as the set of all vectors (i1, • •., id) that satisfy the Cache Miss

Equation [4]:

(il + nli2 + nln2ia + ... + nl ""ha-lid) mod S = 0.
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We will use some geometrical properties of lattices. Let B be a convex body

of volume V, symmetrical about the origin. The minimal hi such that 2iB contains
i linear independent vectors of L is called the i _h successive minimum of a lattice L

relative to B. A theorem by Minkowski, see [1] (Ch. VIII, Th. V), asserts that

2d d 2d
__ < VI_=l ),_-- < --. (1)
d!V - detL - V

Note that the ratios of lattice successive minima relative to the unit cube and to

the unit ball can be bounded: 1/d <_ ;_c.ub_i&b.aa < d. If B is a unit cube we call
"'t t''Z

f = Ad/A1 the eccentricity of the lattice (not to be confused with eccentricity of a

reduced basis, defined in [2], Section 4).

3.2 Successive Minima Tiling

In this section we consider tilings with Voronoi cells and with successive minima

parallelepipeds. We show that these tilings have good surface-to-volume ratio if the
lattice has a small eccentricity.

In [2] we have introduced a tiling by parallelepipeds built on a reduced-basis
of the interference lattice, which decreases the number of the cache misses to a
level close to the theoretical lower bound that we also derived. Measurement shows

that this tiling has significantly fewer cache loads than a compiler-optimized code.

However, it has a high computational cost, since it depends on a significant number

of integer parameters (29 integers for a 3D grid), and its implementation scans

through a significant number of the grid points to select those suitable for cache

conflict-free-computations. This prompts us to consider other tilings.

A Voronoi tiling is a tiling of the grid by completed cell C (Voronoi tile) of

the Voronoi diagram. For each lattice point x a Voronoi cell is the set of points

which are closer to x than to any other lattice point. All integer points inside each

Voronoi cell are mapped into the cache without conflicts. Voronoi cells may not

form a tiling since some integer points can be located on a cell boundary. There

are many qualitatively equivalent ways to complete the cells to form a tiling. One

way is to choose a basis in the space of the lattice and assign an integer point on a

cell boundary to the cell whose center has the lexicographically smallest projection
on the basis vectors.

In order to estimate the surface-to-volume ratio of C we note that the com-

pleted Voronoi cells form a tiling of space. Hence, the volume of C equals the

determinant of the lattice, which is equal to S, see [2]. On the other hand, each

vertex v of C is equidistant from d lattice points. Let r be that distance. Again,

according to the definition of the Voronoi cell, the ball of radius r, centered at

v, contains no other lattice points. Hence, C is contained in a ball of radius R,

centered at o, where R is a maximal ball of the lattice (a ball of maximum radius

containing no lattice points). Thus, the surface area of C is bounded by the surface
7rd/2

of the maximal ball, which equals dVdR d-l where 1/_ - r(l+dT_ is the volume of

the unit d-dimensional ball (see [1] Ch. IX.7).
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We can bound the radius of the maximal ball Ra by

d

n 2= < 1/4 g.
i=l

This can be proved by induction on d (see Figure 1)

n_ < (ha�2) _ + n__, < (ha�2) _ + RL1

(2)

"d+Ld-!

Figure 1. The radius of maximal ball inscribed into L can be estimated

through the radius Ra-x of the maximal ball inscribed into the lattice La-1 built on

the first d- 1 minima vectors, and through the value of the last minimum ha = IVdl.
Here ha is the distance between La-1 and Vd + La-_

Hence, for the surface area A of C we have the estimation

A(C) = dVaR a-1 < d(v/'d/2)a-lVaha a-1 < d_AV_/a f(a-1)2/aS (a-1)/a,

2 a fd--l_
where we used the estimation had < W_- _ derived from (1), and the bound

R < -_-_hd which follows from (2).

Finally, for the surface-to-volume ratio of the Voronoi cell we have the following
estimate:

A(C_____)<_ Caf(a_l)2/dS_X/a
y(c)

where ca is a constant depending on d only.

Successive minima tiling. The Voronoi cell tiling has cache-conflict-free tiles

of maximum possible volume S, and of good surface-to-volume ratio. However, the

tiles may have many faces and it may be computationally expensive to scan through

the grid points inside a tile. In this sense it is desirable to use rectilinear tiles. A

successive minima tiling ,is a tiling by a Cartesian block built with use of successive

minima lattice vectors of the unit cube. Such a block Q can be described by the

system

[xil <_ bi, i = 1,..., d (3)

I
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where A1 _< bi _< Ad.

The block Q can be constructed by the following "inflating" process. Take an

initial cube of the form (3) with bi = 1, i -- 1,..., d, and increment bi until the face

xi = bl contains a lattice point. Continue to increment values of all bj for which

the face xj = bj has no lattice points. At the end we obtain a block of the form

(3) containing a lattice point on each of its faces and containing no lattice points

inside except o. In the best case each successive minimum vector will belong to one

of the faces of the block, meaning that bi = Ai (after an appropriate reordering of

the coordinates). On the other side, it is not difficult to construct a 3-dimensional

lattice such that the block bl = A1, b2 = b3 -- A2 < A3, so the volume of the block

would be strictly less then A1 -. • Ad.
Any translation of the block Q' l-- _Q obviously contains at most one lattice

point and can be used for conflict free tiling. This block has a good surface-to-

volume ratio if the lattice has bounded eccentricity, which can be seen from the

following inequalities: A(Q') < 2dAdd-1 and V(Q') :> Ad. Hence, the surface-to-
volume of the block can be estimated as follows:

A(Q')
V(Q')

< 2df(d-1)2/d/A 1 <_ d(d!Vd)l/dfd-ls -1/d

since Ad = fA1 and AI > 2(x.-_)l/_f (d-1)/ct as follows from (1).
As a representative example, the number of cache misses for tilings of 3-

dimensional grids of sizes 40 _ nx < 99, ny = 97, nz = 99 with successive minima

parallelepipeds is shown in Figure 2. Experiments were performed on an SGI Origin
2000 machine with a MIPS R10000 processor.

A

E

e
Z

150

100

50

successive minima

i , L .

40 60 80 1 O0

nx

Figure 2. Comparison of cache misses for a second order stencil operator

as a function of the first dimension (40 < nx < 99, ny = 97, nz = 99). The
top graph shows the number of cache misses for the compiler optimized nest. The

bottom graph is obtained for tilings with successive minima parallelepipeds.

--(9
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4 Unstructured Grids - Cache Unfriendly
3-dimensional Grid

In this section we construct an unstructured, bounded-degree 3-dimensional grid of

M vertices which has a subgrid of G the size cdM that does not have small subsets

with good perimeter-to-volume ratio. From this property, following the arguments

of [2], it can be shown that for any computation of an explicit operator defined

on the grid _(M/logM) replacement loads must occur. This shows that if gauged

by the number of cache misses, unstructured girds of bounded degree cannot be

guaranteed to be as cache friendly as structured grids of the same size.

Our construction is based on embedding an FFT butterfly graph into a tri-

angulation of a 3-dimensional cube. The 2"-point FFT graph, denoted as F,_, is a

graph having (n + 1)2 n = N vertices arranged in n + 1 layers of 2" vertices each,

see Figure 3. In other words, vertices of F,_ form an array (k,i), 0 _< k < n,0 _<

F_ 1

F
n

Figure 3. A recursive construction of the FFT graph. Fn is built from

two copies of F_-i by adding n + 1 th layer ofT* vertices and connecting them with

vertices of n th layer by the butterflies.

i < 2'* - 1 and a vertex (k,i), k < n is connected with vertices (k + 1,i) and

(k + 1,i 1_2 k) where i (_2 k signifies taking the complement of the k th bit of i.

The FFT graph can not be tiled by sets with good surface-to-volume ratio.

This can be deduced from the following inequality. For any node subset V C Fn we
have

IV[ _< 215V1 log 15V I (4)

where 5V is the right boundary of V, that is, the set of points in V either on the

right boundary of F,_ or having a right neighbor not in V. Obviously, 16VI < IVI.

Consider a partition Fn = UVi, i = 1,...,k, ]_]J < S. For any subset V C F,_
1

it follows from (4) that ISV I > 7[VI/loglVI, and we can estimate the sum of
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boundaries of the partition. If S < 2_/s then:

k 1 _ IV/I 2.2"Z ]O(Y/)[ > Z [5(Vi)l - 2.2 n > _ log IVil
i=1 i=l "=

1 k N

-> 2logs _ IVi[ - 2.2 n >_ 4logS"
i=l

This estimation can be used to prove the lower bound f_(M/logM) by the methods

of[2].
Our proof of inequality (4) is based on induction and is similar to the proof

of Theorem 4.1 in [5]. Let V be partitioned onto three sets A, B and C, as shown

in Figure 4. From the figure we can see that

Figure 4. Induction step for proving the surface-to-volume inequality of a

subset in F,_. We can assume that IAol > IBol.

[_fV[ _> [_f,41+ [JB[ + D + min(0, [CI - 2[Ao[)

IV[ < [A[ + [B[ + 2Ao + min(0, [C[ - 2[Ao[)

where D = IAol - IBol. If ICI < 21,4ol then, by induction,

IWl<__2(15AIlog 15.41+ 15BIlog15BI+ IAol)___2(FVI log15El- X)

where

15B[ D___D__)
X = 15AIlog(1 + _- + 15,41

15AI D
+ I,Sgllog(1+ _ + i-_) + D log(15AI+ I5BI+ D) - D - Bo.

Since IBol < 15BIand IBol < 1,4ol< 15AIand either log(1 + _ + _-l) > 1 or

log(X+ _ + /-_) _>1, or both, then X > 0. Hence IWl___21_Wllog 15El.
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If y = min(0, ]C[ - 21Aol) > 0 then the surface-to-volume inequality follws

from the fact that v + y < 2(d+ y) log(d + y) ifv _< 2dlogd.

The FFT graph can be embedded into a triangulation of a 3-dimensional cube.

A recursive construction of an embedding of the FFT graph into triangulation of

simplices is shown in Figure 5. The simplices can be embedded into a cube as

shown in Figure 7, which than can be partitioned into parallelepipeds with further

triangulation of each parallelepiped.

The butterflies connecting two last layers of F,_ can be embedded into a tri-

angulation of a simplex in such a way that the edges of the butterflies are mapped

onto lines of pieces (to, t3, bT, b4) and (tT, ta, b3, bo) of one of the ruled surfaces 1 and

two skewed ruled surfaces (to, t3, b3, bo) and (t7, t4, b4, bT). Each ruled surface sepa-

rates a simplex built on the appropriate vertices onto two parts as shown in Figure

8, the top view is shown in Figure 6. The whole simplex (to, t7, b7, bo) can be par-

titioned onto four above listed simplices and 5 primitive simplices: (t3, Q, b_, b4),

(t3, t4, b4, bT), (t3, t4, b3, bo), (to, t3, b4, b3) and (tT, t4, b4, b3). Each of the simplices

(to, t3, bT, b4), (tT, t4, bz, bo), (to, t3, b3, bo) and (t7, t4, b4, bT) is separated by a ruled

surface, hence it is sufficient to build a triangulation of a simplex separated by a

ruled surface see Figure 8. This can be done in 3 steps: 1. adding vertices oil

the edges which are not parts of the ruled surface, 2. partitioning the simplex into

triangular prisms and, 3. triangulating each prism.

It is easy to verify that the total number of vertices in the triangulation does
not exceed M = 3n2 '_. Hence we have constructed a triangulation having the

property declared at the beginning of this section.

0
t4

b z b o

F

b 7 b4 b3 bo t7

Figure 5. Recursive con-

struction of embedding of FFT graph

into a triangulations of a simplex.

Figure 6. Embedding one

layer of FFT graph into a triangulations

of a simplex, top view.

IThe ruled surfaces described here are built by linearly parametrizing two crossing lines in 3D
space and connecting corresponding points by lines. A ruled surface can be viewed as a hyperboloid
containing the two crossing lines.

--@
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Figure 7. Recursive triangu-
lation of a cube.

to
t2

Figure 8. Triangulation of a

simplex separated by a ruled surface via

adding points sl, s2, s3. Only partition
not shadowed by the ruled surface is

shown.

5 Related Work and Conclusions

The reduction of cache misses in scientific computations is an active subject of
research. One of the first lower bounds for data movement between primary and

secondary storage was obtained on [5]. Recently the work has focused in developing

compiler techniques to reduce the number of cache misses. In this direction we

mention [4], where the notion of the cache miss equation (CME) and a tiling of
structured grids with conflict free rectilinear parallelepipeds were introduced. Some

tight lower and upper bounds for computation of explicit operators on structured

grids were obtained in [2], where a tiling with a reduced fundamental parallelepiped
of the interference lattice was used for reduction of the cache misses. Some practical

methods for improving cache performance in computations of explicit operators are

given in [6].
We showed that the reduction of cache misses for computations of explicit

local operators defined on discretization grids is closely related to the problem of

covering the grids with conflict free sets having good surface-to-volume ratio. W'e

introduced two new coverings of structured grids: a covering with Voronoi cells

and a covering with rectilinear parallelepipeds built on the vectors of successive
minima of the interference lattice. The cells of both coverings have near-optimal

surface-to-volume ratios. Direct measurements of the cache misses show a significant

advantage of the successive minima covering relative to the computations using the

natural loop order, maximally optimized by a compiler. We also showed that there

are bounded degree unstructured 3-dimensional grids such that any local operator

on the corresponding grid has significantly larger number of cache misses than a

similar operator on a structured grid. We are currently working on similar results

in two dimensions.
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